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Abstract— The back-to-back barrier-N-N+ (bbBNN) varactor

is a nonlinear device being developed for frequency multiplier

applications above 100 GHz. Its symmetrical C-V characteristic,
low series resistance, freedom from external bias and suitability
to planarization make it an ideal choice for high frequency, low

power, odd harmonic generation. In this paper, the performance
of a 220-GHz waveguide tripler using, for the first time, a planar
GaAs bbBNN device integrated on a quartz microstrip circuit is

presented. A new split-waveguide block design has been employed

to provide the proper embedding impedances to the device at
the input and third harmonic output frequencies. A flange-to-

flange tripling efficiency of 7% has been obtained at 220 GHz

with an output power in excess of 700 pW. This is believed to be
the highest conversion efficiency yet reported for a tripler with
an integrated device at thk frequency. Theoretical calculations
indicate that substantial improvement is possible with modest

changes to the device and circuit parameters.

I. INTRODUCTION

sPACE-BASED local oscillator sources for heterodyne

radiometry at millimeter and submillimeter wavelengths

favor low power consuming, mechanically robust, solid-state

devices which can operate at ambient temperatures around

300”K. The most common approach uses solid-state har-

monic generators, such as whisker-contacted varactor diode

frequency multipliers, pumped by millimeter-wave fundamen-

tal sources, typically Gunn diode oscillators up to 140 GHz.

Although the whisker contacted Schottky varactor diodes

have proven very effective, there remains great interest in

developing more robust, planar device technologies which are

capable of operating well into the submillimeter wavelength

range and have the potential to deliver sufficient amounts of

power for both astrophysics and Earth remote sensing receiver

applications.

The back-to-back barrier-N-N+ (bbBNN) varactor diode

is one such candidate for THz frequency space applications
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Fig. 1. Schematic of a planar bbBNN vnractor integrated with the microstrip
filter structure on a fused quartz substrate.
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Fig. 2. Semiconductor layer structure of the bbBNN device,

[1]-[3]. The sharp C-V characteristic of this device, which

is peaked around zero volts, allows for potentially high mul-

tiplication efficiency at low input power levels. This is an

advantage, particularly at THz frequencies, where the available

input power from prior multiplication stages necessarily will

be quite low. In addition, its symmetric C–V characteris-

tic offers significant benefits for odd harmonic multiplier

applications since idler circuits at the even harmonics are

not needed. Finally, the bbBNN device does not require

external dc bias to operate at peak efficiency, minimizing the

number of off-chip circuit connections. On the device side,

the bbBNN offers significant processing advantages. There

is no ohmic contact, thereby reducing a substantial parasitic

series resistance contribution. The device exhibits very low

leakage current (<10 nA), has low internal parasitic resistance

(10-20 Q at de), high dynamic cutoff frequency (> 1 THz),

is easily planarized and can be arrayed in stacks to increase

power handling capacity.
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Fig. 3. The fabrication process steps for the integrated planar GaAs bbBNN varactor device. (a) MBE growth with Schottky metallization. (b) Surface
passivation and dielectric window opening. (c) Mounting on quartz. (d) Lapping, etching, mesa definition, and removal of unwanted semiconductor substrate
portions. (e) Backside passivation and contact vias. (f) Backside metal contacts and filter metal patterning.

In this paper the authors describe a 220-GHz tripler com-

posed of a novel waveguide mount [4] and an integrated

bbBNN device in which a new backside etch processing

technique [5] has been used to remove all non-essential

semiconductor material from the vicinity of the device. The

bbBNN is integrated directly with much larger quartz mi-

crostrip filter circuitry to yield a more readily handled package

which can scale potentially to frequencies as high as 1 THz.

Measurements of the tripler performance are compared with

computer simulations using a modified version of the code

developed in [6] to gain a better understanding of the device

limitations and potential performance realization.

II. INTEGRATED bbBNN DEVICE

Fig. 1 shows the schematic diagram of the planar bbBNN

varactor structure, integrated with a microstrip filter on a quartz

substrate. The bulk of the circuit is composed of fused quartz

with a patterned gold top layer. The remainder of the circuit

consists of a small semiconductor mesa that forms the active

bbBNN device. The device is held in position via a UV-cured

adhesive in a technique first described in [7].

A cross-sectional view of the active area of the device is

shown in Fig. 2, Since the structure consists of two diodes tied

back-to-back by a highly doped GaAs region, the capacitance

versus voltage characteristic is symmetric. The maximum

capacitance occurs at zero bias, when there is a high level of

induced free charge from the planar doping sheet at the bottom

of the AIGaAs/GaAs interface. The minimum capacitance

is obtained when a bias is applied so that one diode is in

accumulation and the other is fully depleted. The resulting

capacitance is the series combination of the capacitance of the

two diodes, with most of the capacitance change occurring

across the depleted device. The layer thicknesses, composi-

tions and doping densities, along with the number of barrier

layers and the device geometry, can be independently tailored

to optimize the device for the desired frequency. Combinations

of depletion layer doping and planar doping sheets allow some

tailoring of the capacitance versus voltage characteristic [1].

A. Fabrication of Integrated bbBNN Varactor

A fabrication process was designed to integrate the pla-

nar bbBNN device with distributed quartz microstrip filter

circuitry and to eliminate all the GaAs on the final circuit

structure except for the small active GaAs mesa region. It

has been demonstrated that, prefabricated and thhned GRAS

substrate devices can be transplanted onto quartz using UV-

cured optical cement [7]. However, this process, which uses a

surface channel etch to achieve diode isolation, leaves highly

doped GaAs around the devices and under the distributed

circuit elements, which can be detrimental to the RF perfor-

mance. Other, more conventional, diode isolation techniques

have a number of drawbacks. Isolation implants are commonly

used, but the removal of masking materials from the wafer

often present difficulties. An alternative technique for isolating

active devices is to perform a mesa etch, but contacting the

top of the mesa generally requires using a planarization or

air bridge process. Our experiments have indicated that the

planarization process damages the thin barrier layer of the

BNN wafer, while an air bridge process is difficult to use on

small area devices with deep mesas.
The integration process presented here uses a backside

processing technique [5] in which the front of the wafer is

exposed to a minimum amount of processing. The salient

process steps are shown in Fig. 3. The GaAs wafer structure

(Fig. 3(a)) consists of 1) a 2-rim-thick GaAs cap layer, 2) a 20-
nm A1o.4.5GaO.ssAs barrier, 3) a 3-rim GaAs sPacer followed
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(a)

(b)

Fig. 4. (a) Photograph of a completed and diced integrated bbBNN on a
goldiquartz hammerhead rnicrostrip filter structure. (b) Close-up view of the
integrated bbBNN device seen through the quartz substrate.

by 4 x 1012 cm-2 silicon planar doping, 4) a 120-nm-thick

moderately doped GaAs layer (doping level = 1 x 1017 cm–3),

5) a 1300-nm-thick highly doped GaAs layer (doping level
= 5 x 1018 cm–3), and 6) a 600-nm-thick A1o.AsGaO.ssAs etch

stop layer grown by MBE on a 500-~m-thick semi-insulating

GRAS substrate.

To begin the process, Schottky contacts are defined by

lift-off of e-beam evaporated Ti/Pt/Au. The wafer is then

passivated with 1200 ~ of ECR deposited silicon nitride. Using

reactive ion etching, windows in the nitride are opened over the

metal contact pads away from the active area of the device.

The wafer is then bonded face down to a O.152-mm-thick

quartz substrate with a thin layer (approximately 5–10 ~m) of

commercially available UV curing optical adhesive (Norland

type 61). The windows in the nitride allow the glue to adhere

directly to the metal pads, which helps to prevent metal peeling

during later probe testing and wire bonding of the devices. The

quartz mounted wafer is first mechanically lapped to about
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Fig. 5. Measured (a) C–V and (b) I–V characteristics of an 8-#m2 integrated
bbBNN varactor.
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Fig. 6. Computed bbBNN tripling efficiency to 220 GHz versus input power

parameterized by the device series resistance.

100 ~m. The semiconductor substrate is further thinned in a

selective etch that removes the remaining bulk GRAs, stopping

on the AlGaAs etch stop layer. Mesas are patterned from the

backside of the wafer using an IR mask aligner (while the

backside illumination is necessary, the wafer is sufficiently
thin that the IR feature is not required). A dry etch containing

BC13, (312, and Ar removes all the nonessential semiconductor

material surrounding the active area, thus isolating the devices

and exposing the metal contact pads. After removal of the

mesa photoresist, the backside is passivated with a second

layer of silicon nitride and contact windows are opened by

photolithography and reactive ion etching. The backside metal

contact pads, and subsequently the microstrip filter circuitry,

are defined using CrlAu evaporation and lift-off techniques.

The final filter structure has I-flm-thick evaporated gold to

reduce the skin effect resistance. Fig. 4(a) shows a photograph

of the integrated device. Fig. 4(b) shows a close-up view of the

device portion of the integrated filter through the O.152-mm-



CHOUDHURY etal.:INTEGRATED BACK TO BACK BARRIER-N-N+ VARACTOR DIODE TRIPLER 951

200
[ I

160

120

80 10 c1 15 Q 20 Q

o 10 20 30 40

REAL INPUT IMPEDANCE (Q)

(a)
80 I (

0 10 20 30 40

REAL OUTPUT IMPEDANCE (Q)

(b)

Fig. 7. Theoretical optimum embeddkg impedances for the integrated
bbBNN vsrractor tripler to 220 GHz as a function of inpnt power paameterized
bydevice series resistance. (a) At 73.3 GHz. (b) At220GHz.

thick transparent quartz substrate. Two fingers at the center

of this photograph define the Schottky contact area across the

mesa top surface, and connect the device to the contact pads.

B. dc Device Characteristics

A mask set containing many device and circuit variations

was generated, The design parameters for the devices were

obtained using the procedures outlined in [8]. The integrated

devices which gave the best performance in these experiments

have an area of 8 ~mz, a GaAs mesa width of 4 ~m and

metal contact fingers which are 2 pm wide and separated

by a 1.4-~m gap. The chosen design parameters of the

devices are: maximum capacitance, C~.X = 23 fF, capacitance

ratio, CmaX/C~in = 4, dc series resistance, R. = 11 Q,

breakdown voltage, V~r = 22 V, dynamic cut-off frequency,

~c~ = l/(z~~sCmin){l – Cmin/Cmax} G 1.9 THz. R. comes
mainly from the n+ region and to a lesser extent from the sheet

doping and depletion layers [8]. Unlike a typical Schottky

varactor, the series resistance is not necessarily affected by
changes which alter the C~.X/Cmin ratio and therefore need

not be traded off with doping in realizing higher cut-off

frequencies [8].

Typical measured dc characteristics for the 8-#m2 de-

vice, which gave the best performance are: Cm.. = 24 fF,

Cmax/Cmin = 2.7, and Vbr = 6 V. R, cannot be measured

at dc, however, equivalent circuit modeling of similar devices

had values between 11 and 14 Q when measured on a special

test fixture at 1–20 GHz [3]. Fig. 5 shows the current-voltage

(I-V) and 1 MHz capacitance–voltage (C-V) characteristics

of a typical 8-pm2 device on the quartz RF microstrip filter

circuitry. The disparity between the predicted and measured

CmaX/Cmin ratio is most likely due to unmodeled parasitic

capacitances which raise the value of C~in. The lower than

expected breakdown voltage may be due to avalanching and

edge effects.

III. COMPUTED TRIPLER PERFORMANCE

The performance of the 8-~m2 bbBNN device described

in this paper has been calculated using a modified ver-

sion of the large signal analysis program [6]. The program

has been modified to handle the measured C–V and I–V

characteristics of the bbBNN varactors (shown in Fig. 5),

including a frequency dependent series resistance. The input

and output embedding impedances are optimized for best

computed tripling efficiency. Harmonic frequencies other than

the output are short circuited.

Since the series resistance of the bbBNN is an important

parameter but is not readily derived from dc measurements,

the calculations are carried out for a range of values (corre-

sponding to a range of cut-off frequencies). Fig. 6 presents the

computed diode tripling efficiency versus input power for the

integrated bbBNN varactor used in this experiment plotted for

series resistance values of 10, 15, and 20 Q. Higher device

series resistances degrade the performance significantly.

Optimized embedding impedances for an input frequency

of 73.3 GHz and a third harmonic frequency of 220 GHz

were ‘computed with input power levels up to 40 mW. The

resulting curves are shown in Fig. 7, again as a function of

series resistance. At low input power, the real part of the

impedance is the same as the diode series resistance and the

imaginary part of the impedance is 90 Q at the input frequency

and 30 Q at the output frequency, corresponding roughly to

zero bias capacitance. The pumped capacitance decreases with

increasing input power, thereby increasing the imaginary part

of the embedding impedance. The minimum capacitance of

9 fF corresponds to 220 f? at the input frequency and 80

Q at the output frequency. As can be seen in the plots, for

optimum performance, the waveguide mount must match real

impedances in the range 10–30 Q at the input and output

frequencies. The imaginary impedances needed are in the

range from 90–200 Q for the input circuit and from 30-75

f2 for the output circuit.

IV. WAVEGUIDE MOUNT DESCRIPTION

A split-waveguide mount was used to provide the desired

input and output embedding impedances to the integrated
bbBNN device. This mount has been described elsewhere

[4]. Modifications used especially for the bbBNN devices

described here include: separate tuning stubs at the input and

output frequencies, which lie in microstrip channels beyond

the output waveguide wall, a channel waveguide transformer

[9], which increases both the height and width (slightly) of the
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Fig. 8. Close-up view of the filter portion of the 220-GHz tripler mount.

output wavegttide, and noncontacting backshorts [10] in both

the series and parallel tuning arms of the input and output

waveguides. The bbBNN device is positioned at the center

of the broad wall of the output waveguide (half height WR-4

waveguide –0.28 mm x 1.09 mm). The distances of the input

and output E-plane waveguides from the microstrip filter are

approximately &.U,& /2 at the fundamental and third harmonic

frequencies, respectively. The microstrip filter channel is 0.36

mm wide and 0.31 mm high and it extends across and beyond

the output tuner waveguide (where the matching stubs lie).

A dc return is supplied by a wire bond at the end of the

microstrip filter. Bias voltage can be applied to the device (to

check characteristics, for instance) through a pump-block filter

and SMA connector which are contained in the lower half of

the tripler block (see Fig. 8).

The integrated RF filter and the bias filter (see Fig. 8) help to

achieve both signal separation and matching. These microstrip

hammerhead filters are fabricated on 0.33-mm-wide and 0.152-

mm-thick fused quartz substrates. Fine tuning of the filter

response was accomplished using the finite difference time

domain (FDTD) method [11], The bias filter rejects the 60-80

GHz input power. The RF filter passes the input frequency,
but rejects the tripled output power. The filter on the far side

of the output tuner waveguide presents a short circuit at the

waveguide wall at the third harmonic frequency and presents

a reactive termination, via a side stub, at the fundamental

frequency,

V. RF Pt3RF0RMANCE

The tripler performance was measured using the technique

described in [12]. Gunn oscillators were used as pump sources

and no device bias was applied during the measurements. The

tripling efficiency of the bbBNN device refers to Anritsu type

TC power meter heads at the input and output waveguide

flanges. The reflected power is monitored during measurement

using a directional coupler and a third power meter.

Measurements were carried out over the frequency range of

200–240 GHz. The best performance was achieved at an output

frequency of 217.5 GHz. Fig. 9(a) shows the measured tripling

efficiency versus input power for the 8-~m2 integrated bbBNN

varactor in the split-waveguide mount, The efficiency of the

tripler reaches its maximum value of 770 at 8.8 mW input

power and then begins to decrease as the pump power level

is increased. Fig. 9(b) shows the tripled output power versus

input power for this device, A maximum output power of about

730 pW was measured for 14.3 mW input power, Fig. 9(c)

presents the tripling efficiency versus output frequency curves
for different input power levels. Input impedance match-

ing was easily obtained for these measurements, but output

impedance matching was difficult and changed rapidly with

slight variation of input frequency and power levels.

Many other bbBNN devices with varying values of zero bias

capacitances were measured in this waveguide block, but none

performed as well as the 8-pm2 device. The tripling efficiency

was found to depend greatly, as expected, on the cm&Y/(7mi.

ratio and this ratio varied significantly from device to device,

Subsequent model measurements on scaled bbBNN’s at 10

GHz [13] showed very similar trends.

VI. CONCLUSION

The performance of a monolithically integrated planar

bbBNN varactor tripler has been presented. A device

development process has been described which integrates

the bbBNN with a larger tuning circuit on a quartz substrate.

The resulting planar structure is scaleable to submillimeter

wave frequencies and allows for significantly more flexibility

in circuit design than would be available with a whisker

contacted or discrete varactor chip technology.
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Fig. 9. (a) Measured tripling efficiency versus input power for the 8-#m2
bbBNN device at 217.5 GHz. (b) Measured output power versus input power
for the same device at 217,5 GHz. (c) Measured tripling efficiency versus

output frequency at input power levels of 5, 8.8, and 12 mW.

A flange-to-flange tripling efficiency of 7% and a maximum

output power of about 730 pW were measured for the inte-

grated bbBNN device. Although this efficiency is higher than

previously reported for a planar device structure, it is much

less than expected from the computer simulations, and the

differences cannot be attributed solely to circuit losses. The

reasons for the discrepancy are not understood, however there

is some recent work [14] which indicates that the large signal

analysis used for our computer simulations significantly over

estimates the conversion efficiency for the bbBNN as well

as other heterostrttcture devices. The predicted shape of the

power versus efficiency curves and the input power at which

the highest tripling efficiency occurs do, however, agree with

those measured at 220 GHz even if the absolute levels are

much lower. A similar trend is seen on a 1O-GHZ scale model

of the tripler block with scaled bbBNN structures.

Finally, the best devices used in this study have a

cmaX/Cmin ‘f 2.7 ‘r less. increasing ‘he Crn../Cmin ratio
should significantly improve the performance of the bbBNN

without significantly decreasing the dynamic cut-off frequency

[8]. The C~aX/Cmin ratio can be improved by proper

optimization of the doped and sheet charge layer structures

and by reducing the parasitic capacitances associated with the

device structure. Any increase in C~aX/C~in will translate

into higher potential conversion efficiencies and higher

achievable operating frequencies. To date, single whisker-

contacted Schottky varactor triplers and planar Schottky

varactor doublers have conversion efficiencies which exceed

20% [15], [16]. However, the bbBNN device has only been

available for a relatively short time, and because of its very

versatile structure, only a small set of the available parameter

space has been explored. Its natural potential for odd harmonic

generation, easily realizable planar structure and versatile

composition make it a device of considerable interest. With

additional experimental work, improvement in performance

seems likely in the future.
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